Termination w.r.t. Q of the following Term Rewriting System could not be shown:
Q restricted rewrite system:
The TRS R consists of the following rules:
plus2(x, 0) -> x
plus2(0, y) -> y
plus2(s1(x), y) -> s1(plus2(x, y))
times2(0, y) -> 0
times2(s1(0), y) -> y
times2(s1(x), y) -> plus2(y, times2(x, y))
div2(0, y) -> 0
div2(x, y) -> quot3(x, y, y)
quot3(0, s1(y), z) -> 0
quot3(s1(x), s1(y), z) -> quot3(x, y, z)
quot3(x, 0, s1(z)) -> s1(div2(x, s1(z)))
div2(div2(x, y), z) -> div2(x, times2(y, z))
eq2(0, 0) -> true
eq2(s1(x), 0) -> false
eq2(0, s1(y)) -> false
eq2(s1(x), s1(y)) -> eq2(x, y)
divides2(y, x) -> eq2(x, times2(div2(x, y), y))
prime1(s1(s1(x))) -> pr2(s1(s1(x)), s1(x))
pr2(x, s1(0)) -> true
pr2(x, s1(s1(y))) -> if3(divides2(s1(s1(y)), x), x, s1(y))
if3(true, x, y) -> false
if3(false, x, y) -> pr2(x, y)
Q is empty.
↳ QTRS
↳ DependencyPairsProof
Q restricted rewrite system:
The TRS R consists of the following rules:
plus2(x, 0) -> x
plus2(0, y) -> y
plus2(s1(x), y) -> s1(plus2(x, y))
times2(0, y) -> 0
times2(s1(0), y) -> y
times2(s1(x), y) -> plus2(y, times2(x, y))
div2(0, y) -> 0
div2(x, y) -> quot3(x, y, y)
quot3(0, s1(y), z) -> 0
quot3(s1(x), s1(y), z) -> quot3(x, y, z)
quot3(x, 0, s1(z)) -> s1(div2(x, s1(z)))
div2(div2(x, y), z) -> div2(x, times2(y, z))
eq2(0, 0) -> true
eq2(s1(x), 0) -> false
eq2(0, s1(y)) -> false
eq2(s1(x), s1(y)) -> eq2(x, y)
divides2(y, x) -> eq2(x, times2(div2(x, y), y))
prime1(s1(s1(x))) -> pr2(s1(s1(x)), s1(x))
pr2(x, s1(0)) -> true
pr2(x, s1(s1(y))) -> if3(divides2(s1(s1(y)), x), x, s1(y))
if3(true, x, y) -> false
if3(false, x, y) -> pr2(x, y)
Q is empty.
Q DP problem:
The TRS P consists of the following rules:
DIV2(div2(x, y), z) -> TIMES2(y, z)
QUOT3(x, 0, s1(z)) -> DIV2(x, s1(z))
PR2(x, s1(s1(y))) -> DIVIDES2(s1(s1(y)), x)
DIVIDES2(y, x) -> TIMES2(div2(x, y), y)
DIVIDES2(y, x) -> EQ2(x, times2(div2(x, y), y))
PLUS2(s1(x), y) -> PLUS2(x, y)
TIMES2(s1(x), y) -> PLUS2(y, times2(x, y))
QUOT3(s1(x), s1(y), z) -> QUOT3(x, y, z)
EQ2(s1(x), s1(y)) -> EQ2(x, y)
DIV2(div2(x, y), z) -> DIV2(x, times2(y, z))
TIMES2(s1(x), y) -> TIMES2(x, y)
PR2(x, s1(s1(y))) -> IF3(divides2(s1(s1(y)), x), x, s1(y))
DIV2(x, y) -> QUOT3(x, y, y)
IF3(false, x, y) -> PR2(x, y)
DIVIDES2(y, x) -> DIV2(x, y)
PRIME1(s1(s1(x))) -> PR2(s1(s1(x)), s1(x))
The TRS R consists of the following rules:
plus2(x, 0) -> x
plus2(0, y) -> y
plus2(s1(x), y) -> s1(plus2(x, y))
times2(0, y) -> 0
times2(s1(0), y) -> y
times2(s1(x), y) -> plus2(y, times2(x, y))
div2(0, y) -> 0
div2(x, y) -> quot3(x, y, y)
quot3(0, s1(y), z) -> 0
quot3(s1(x), s1(y), z) -> quot3(x, y, z)
quot3(x, 0, s1(z)) -> s1(div2(x, s1(z)))
div2(div2(x, y), z) -> div2(x, times2(y, z))
eq2(0, 0) -> true
eq2(s1(x), 0) -> false
eq2(0, s1(y)) -> false
eq2(s1(x), s1(y)) -> eq2(x, y)
divides2(y, x) -> eq2(x, times2(div2(x, y), y))
prime1(s1(s1(x))) -> pr2(s1(s1(x)), s1(x))
pr2(x, s1(0)) -> true
pr2(x, s1(s1(y))) -> if3(divides2(s1(s1(y)), x), x, s1(y))
if3(true, x, y) -> false
if3(false, x, y) -> pr2(x, y)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
Q DP problem:
The TRS P consists of the following rules:
DIV2(div2(x, y), z) -> TIMES2(y, z)
QUOT3(x, 0, s1(z)) -> DIV2(x, s1(z))
PR2(x, s1(s1(y))) -> DIVIDES2(s1(s1(y)), x)
DIVIDES2(y, x) -> TIMES2(div2(x, y), y)
DIVIDES2(y, x) -> EQ2(x, times2(div2(x, y), y))
PLUS2(s1(x), y) -> PLUS2(x, y)
TIMES2(s1(x), y) -> PLUS2(y, times2(x, y))
QUOT3(s1(x), s1(y), z) -> QUOT3(x, y, z)
EQ2(s1(x), s1(y)) -> EQ2(x, y)
DIV2(div2(x, y), z) -> DIV2(x, times2(y, z))
TIMES2(s1(x), y) -> TIMES2(x, y)
PR2(x, s1(s1(y))) -> IF3(divides2(s1(s1(y)), x), x, s1(y))
DIV2(x, y) -> QUOT3(x, y, y)
IF3(false, x, y) -> PR2(x, y)
DIVIDES2(y, x) -> DIV2(x, y)
PRIME1(s1(s1(x))) -> PR2(s1(s1(x)), s1(x))
The TRS R consists of the following rules:
plus2(x, 0) -> x
plus2(0, y) -> y
plus2(s1(x), y) -> s1(plus2(x, y))
times2(0, y) -> 0
times2(s1(0), y) -> y
times2(s1(x), y) -> plus2(y, times2(x, y))
div2(0, y) -> 0
div2(x, y) -> quot3(x, y, y)
quot3(0, s1(y), z) -> 0
quot3(s1(x), s1(y), z) -> quot3(x, y, z)
quot3(x, 0, s1(z)) -> s1(div2(x, s1(z)))
div2(div2(x, y), z) -> div2(x, times2(y, z))
eq2(0, 0) -> true
eq2(s1(x), 0) -> false
eq2(0, s1(y)) -> false
eq2(s1(x), s1(y)) -> eq2(x, y)
divides2(y, x) -> eq2(x, times2(div2(x, y), y))
prime1(s1(s1(x))) -> pr2(s1(s1(x)), s1(x))
pr2(x, s1(0)) -> true
pr2(x, s1(s1(y))) -> if3(divides2(s1(s1(y)), x), x, s1(y))
if3(true, x, y) -> false
if3(false, x, y) -> pr2(x, y)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph contains 5 SCCs with 7 less nodes.
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
↳ QDP
↳ QDP
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
EQ2(s1(x), s1(y)) -> EQ2(x, y)
The TRS R consists of the following rules:
plus2(x, 0) -> x
plus2(0, y) -> y
plus2(s1(x), y) -> s1(plus2(x, y))
times2(0, y) -> 0
times2(s1(0), y) -> y
times2(s1(x), y) -> plus2(y, times2(x, y))
div2(0, y) -> 0
div2(x, y) -> quot3(x, y, y)
quot3(0, s1(y), z) -> 0
quot3(s1(x), s1(y), z) -> quot3(x, y, z)
quot3(x, 0, s1(z)) -> s1(div2(x, s1(z)))
div2(div2(x, y), z) -> div2(x, times2(y, z))
eq2(0, 0) -> true
eq2(s1(x), 0) -> false
eq2(0, s1(y)) -> false
eq2(s1(x), s1(y)) -> eq2(x, y)
divides2(y, x) -> eq2(x, times2(div2(x, y), y))
prime1(s1(s1(x))) -> pr2(s1(s1(x)), s1(x))
pr2(x, s1(0)) -> true
pr2(x, s1(s1(y))) -> if3(divides2(s1(s1(y)), x), x, s1(y))
if3(true, x, y) -> false
if3(false, x, y) -> pr2(x, y)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using an argument filtering and a montonic ordering, at least one Dependency Pair of this SCC can be strictly oriented.
EQ2(s1(x), s1(y)) -> EQ2(x, y)
Used argument filtering: EQ2(x1, x2) = x2
s1(x1) = s1(x1)
Used ordering: Quasi Precedence:
trivial
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
↳ PisEmptyProof
↳ QDP
↳ QDP
↳ QDP
↳ QDP
Q DP problem:
P is empty.
The TRS R consists of the following rules:
plus2(x, 0) -> x
plus2(0, y) -> y
plus2(s1(x), y) -> s1(plus2(x, y))
times2(0, y) -> 0
times2(s1(0), y) -> y
times2(s1(x), y) -> plus2(y, times2(x, y))
div2(0, y) -> 0
div2(x, y) -> quot3(x, y, y)
quot3(0, s1(y), z) -> 0
quot3(s1(x), s1(y), z) -> quot3(x, y, z)
quot3(x, 0, s1(z)) -> s1(div2(x, s1(z)))
div2(div2(x, y), z) -> div2(x, times2(y, z))
eq2(0, 0) -> true
eq2(s1(x), 0) -> false
eq2(0, s1(y)) -> false
eq2(s1(x), s1(y)) -> eq2(x, y)
divides2(y, x) -> eq2(x, times2(div2(x, y), y))
prime1(s1(s1(x))) -> pr2(s1(s1(x)), s1(x))
pr2(x, s1(0)) -> true
pr2(x, s1(s1(y))) -> if3(divides2(s1(s1(y)), x), x, s1(y))
if3(true, x, y) -> false
if3(false, x, y) -> pr2(x, y)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
↳ QDP
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
PLUS2(s1(x), y) -> PLUS2(x, y)
The TRS R consists of the following rules:
plus2(x, 0) -> x
plus2(0, y) -> y
plus2(s1(x), y) -> s1(plus2(x, y))
times2(0, y) -> 0
times2(s1(0), y) -> y
times2(s1(x), y) -> plus2(y, times2(x, y))
div2(0, y) -> 0
div2(x, y) -> quot3(x, y, y)
quot3(0, s1(y), z) -> 0
quot3(s1(x), s1(y), z) -> quot3(x, y, z)
quot3(x, 0, s1(z)) -> s1(div2(x, s1(z)))
div2(div2(x, y), z) -> div2(x, times2(y, z))
eq2(0, 0) -> true
eq2(s1(x), 0) -> false
eq2(0, s1(y)) -> false
eq2(s1(x), s1(y)) -> eq2(x, y)
divides2(y, x) -> eq2(x, times2(div2(x, y), y))
prime1(s1(s1(x))) -> pr2(s1(s1(x)), s1(x))
pr2(x, s1(0)) -> true
pr2(x, s1(s1(y))) -> if3(divides2(s1(s1(y)), x), x, s1(y))
if3(true, x, y) -> false
if3(false, x, y) -> pr2(x, y)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using an argument filtering and a montonic ordering, at least one Dependency Pair of this SCC can be strictly oriented.
PLUS2(s1(x), y) -> PLUS2(x, y)
Used argument filtering: PLUS2(x1, x2) = x1
s1(x1) = s1(x1)
Used ordering: Quasi Precedence:
trivial
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
↳ PisEmptyProof
↳ QDP
↳ QDP
↳ QDP
Q DP problem:
P is empty.
The TRS R consists of the following rules:
plus2(x, 0) -> x
plus2(0, y) -> y
plus2(s1(x), y) -> s1(plus2(x, y))
times2(0, y) -> 0
times2(s1(0), y) -> y
times2(s1(x), y) -> plus2(y, times2(x, y))
div2(0, y) -> 0
div2(x, y) -> quot3(x, y, y)
quot3(0, s1(y), z) -> 0
quot3(s1(x), s1(y), z) -> quot3(x, y, z)
quot3(x, 0, s1(z)) -> s1(div2(x, s1(z)))
div2(div2(x, y), z) -> div2(x, times2(y, z))
eq2(0, 0) -> true
eq2(s1(x), 0) -> false
eq2(0, s1(y)) -> false
eq2(s1(x), s1(y)) -> eq2(x, y)
divides2(y, x) -> eq2(x, times2(div2(x, y), y))
prime1(s1(s1(x))) -> pr2(s1(s1(x)), s1(x))
pr2(x, s1(0)) -> true
pr2(x, s1(s1(y))) -> if3(divides2(s1(s1(y)), x), x, s1(y))
if3(true, x, y) -> false
if3(false, x, y) -> pr2(x, y)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
TIMES2(s1(x), y) -> TIMES2(x, y)
The TRS R consists of the following rules:
plus2(x, 0) -> x
plus2(0, y) -> y
plus2(s1(x), y) -> s1(plus2(x, y))
times2(0, y) -> 0
times2(s1(0), y) -> y
times2(s1(x), y) -> plus2(y, times2(x, y))
div2(0, y) -> 0
div2(x, y) -> quot3(x, y, y)
quot3(0, s1(y), z) -> 0
quot3(s1(x), s1(y), z) -> quot3(x, y, z)
quot3(x, 0, s1(z)) -> s1(div2(x, s1(z)))
div2(div2(x, y), z) -> div2(x, times2(y, z))
eq2(0, 0) -> true
eq2(s1(x), 0) -> false
eq2(0, s1(y)) -> false
eq2(s1(x), s1(y)) -> eq2(x, y)
divides2(y, x) -> eq2(x, times2(div2(x, y), y))
prime1(s1(s1(x))) -> pr2(s1(s1(x)), s1(x))
pr2(x, s1(0)) -> true
pr2(x, s1(s1(y))) -> if3(divides2(s1(s1(y)), x), x, s1(y))
if3(true, x, y) -> false
if3(false, x, y) -> pr2(x, y)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using an argument filtering and a montonic ordering, at least one Dependency Pair of this SCC can be strictly oriented.
TIMES2(s1(x), y) -> TIMES2(x, y)
Used argument filtering: TIMES2(x1, x2) = x1
s1(x1) = s1(x1)
Used ordering: Quasi Precedence:
trivial
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
↳ PisEmptyProof
↳ QDP
↳ QDP
Q DP problem:
P is empty.
The TRS R consists of the following rules:
plus2(x, 0) -> x
plus2(0, y) -> y
plus2(s1(x), y) -> s1(plus2(x, y))
times2(0, y) -> 0
times2(s1(0), y) -> y
times2(s1(x), y) -> plus2(y, times2(x, y))
div2(0, y) -> 0
div2(x, y) -> quot3(x, y, y)
quot3(0, s1(y), z) -> 0
quot3(s1(x), s1(y), z) -> quot3(x, y, z)
quot3(x, 0, s1(z)) -> s1(div2(x, s1(z)))
div2(div2(x, y), z) -> div2(x, times2(y, z))
eq2(0, 0) -> true
eq2(s1(x), 0) -> false
eq2(0, s1(y)) -> false
eq2(s1(x), s1(y)) -> eq2(x, y)
divides2(y, x) -> eq2(x, times2(div2(x, y), y))
prime1(s1(s1(x))) -> pr2(s1(s1(x)), s1(x))
pr2(x, s1(0)) -> true
pr2(x, s1(s1(y))) -> if3(divides2(s1(s1(y)), x), x, s1(y))
if3(true, x, y) -> false
if3(false, x, y) -> pr2(x, y)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
QUOT3(x, 0, s1(z)) -> DIV2(x, s1(z))
QUOT3(s1(x), s1(y), z) -> QUOT3(x, y, z)
DIV2(div2(x, y), z) -> DIV2(x, times2(y, z))
DIV2(x, y) -> QUOT3(x, y, y)
The TRS R consists of the following rules:
plus2(x, 0) -> x
plus2(0, y) -> y
plus2(s1(x), y) -> s1(plus2(x, y))
times2(0, y) -> 0
times2(s1(0), y) -> y
times2(s1(x), y) -> plus2(y, times2(x, y))
div2(0, y) -> 0
div2(x, y) -> quot3(x, y, y)
quot3(0, s1(y), z) -> 0
quot3(s1(x), s1(y), z) -> quot3(x, y, z)
quot3(x, 0, s1(z)) -> s1(div2(x, s1(z)))
div2(div2(x, y), z) -> div2(x, times2(y, z))
eq2(0, 0) -> true
eq2(s1(x), 0) -> false
eq2(0, s1(y)) -> false
eq2(s1(x), s1(y)) -> eq2(x, y)
divides2(y, x) -> eq2(x, times2(div2(x, y), y))
prime1(s1(s1(x))) -> pr2(s1(s1(x)), s1(x))
pr2(x, s1(0)) -> true
pr2(x, s1(s1(y))) -> if3(divides2(s1(s1(y)), x), x, s1(y))
if3(true, x, y) -> false
if3(false, x, y) -> pr2(x, y)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using an argument filtering and a montonic ordering, at least one Dependency Pair of this SCC can be strictly oriented.
QUOT3(s1(x), s1(y), z) -> QUOT3(x, y, z)
Used argument filtering: QUOT3(x1, x2, x3) = x1
DIV2(x1, x2) = x1
s1(x1) = s1(x1)
div2(x1, x2) = x1
times2(x1, x2) = times2(x1, x2)
0 = 0
plus2(x1, x2) = plus2(x1, x2)
Used ordering: Quasi Precedence:
times_2 > plus_2 > s_1
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
QUOT3(x, 0, s1(z)) -> DIV2(x, s1(z))
DIV2(div2(x, y), z) -> DIV2(x, times2(y, z))
DIV2(x, y) -> QUOT3(x, y, y)
The TRS R consists of the following rules:
plus2(x, 0) -> x
plus2(0, y) -> y
plus2(s1(x), y) -> s1(plus2(x, y))
times2(0, y) -> 0
times2(s1(0), y) -> y
times2(s1(x), y) -> plus2(y, times2(x, y))
div2(0, y) -> 0
div2(x, y) -> quot3(x, y, y)
quot3(0, s1(y), z) -> 0
quot3(s1(x), s1(y), z) -> quot3(x, y, z)
quot3(x, 0, s1(z)) -> s1(div2(x, s1(z)))
div2(div2(x, y), z) -> div2(x, times2(y, z))
eq2(0, 0) -> true
eq2(s1(x), 0) -> false
eq2(0, s1(y)) -> false
eq2(s1(x), s1(y)) -> eq2(x, y)
divides2(y, x) -> eq2(x, times2(div2(x, y), y))
prime1(s1(s1(x))) -> pr2(s1(s1(x)), s1(x))
pr2(x, s1(0)) -> true
pr2(x, s1(s1(y))) -> if3(divides2(s1(s1(y)), x), x, s1(y))
if3(true, x, y) -> false
if3(false, x, y) -> pr2(x, y)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using an argument filtering and a montonic ordering, at least one Dependency Pair of this SCC can be strictly oriented.
DIV2(div2(x, y), z) -> DIV2(x, times2(y, z))
Used argument filtering: QUOT3(x1, x2, x3) = x1
DIV2(x1, x2) = x1
div2(x1, x2) = div1(x1)
times2(x1, x2) = times2(x1, x2)
0 = 0
s1(x1) = s1(x1)
plus2(x1, x2) = plus2(x1, x2)
Used ordering: Quasi Precedence:
times_2 > plus_2 > s_1
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
QUOT3(x, 0, s1(z)) -> DIV2(x, s1(z))
DIV2(x, y) -> QUOT3(x, y, y)
The TRS R consists of the following rules:
plus2(x, 0) -> x
plus2(0, y) -> y
plus2(s1(x), y) -> s1(plus2(x, y))
times2(0, y) -> 0
times2(s1(0), y) -> y
times2(s1(x), y) -> plus2(y, times2(x, y))
div2(0, y) -> 0
div2(x, y) -> quot3(x, y, y)
quot3(0, s1(y), z) -> 0
quot3(s1(x), s1(y), z) -> quot3(x, y, z)
quot3(x, 0, s1(z)) -> s1(div2(x, s1(z)))
div2(div2(x, y), z) -> div2(x, times2(y, z))
eq2(0, 0) -> true
eq2(s1(x), 0) -> false
eq2(0, s1(y)) -> false
eq2(s1(x), s1(y)) -> eq2(x, y)
divides2(y, x) -> eq2(x, times2(div2(x, y), y))
prime1(s1(s1(x))) -> pr2(s1(s1(x)), s1(x))
pr2(x, s1(0)) -> true
pr2(x, s1(s1(y))) -> if3(divides2(s1(s1(y)), x), x, s1(y))
if3(true, x, y) -> false
if3(false, x, y) -> pr2(x, y)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using an argument filtering and a montonic ordering, at least one Dependency Pair of this SCC can be strictly oriented.
QUOT3(x, 0, s1(z)) -> DIV2(x, s1(z))
Used argument filtering: QUOT3(x1, x2, x3) = x2
0 = 0
DIV2(x1, x2) = x2
s1(x1) = s
Used ordering: Quasi Precedence:
0 > s
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
DIV2(x, y) -> QUOT3(x, y, y)
The TRS R consists of the following rules:
plus2(x, 0) -> x
plus2(0, y) -> y
plus2(s1(x), y) -> s1(plus2(x, y))
times2(0, y) -> 0
times2(s1(0), y) -> y
times2(s1(x), y) -> plus2(y, times2(x, y))
div2(0, y) -> 0
div2(x, y) -> quot3(x, y, y)
quot3(0, s1(y), z) -> 0
quot3(s1(x), s1(y), z) -> quot3(x, y, z)
quot3(x, 0, s1(z)) -> s1(div2(x, s1(z)))
div2(div2(x, y), z) -> div2(x, times2(y, z))
eq2(0, 0) -> true
eq2(s1(x), 0) -> false
eq2(0, s1(y)) -> false
eq2(s1(x), s1(y)) -> eq2(x, y)
divides2(y, x) -> eq2(x, times2(div2(x, y), y))
prime1(s1(s1(x))) -> pr2(s1(s1(x)), s1(x))
pr2(x, s1(0)) -> true
pr2(x, s1(s1(y))) -> if3(divides2(s1(s1(y)), x), x, s1(y))
if3(true, x, y) -> false
if3(false, x, y) -> pr2(x, y)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph contains 0 SCCs with 1 less node.
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
PR2(x, s1(s1(y))) -> IF3(divides2(s1(s1(y)), x), x, s1(y))
IF3(false, x, y) -> PR2(x, y)
The TRS R consists of the following rules:
plus2(x, 0) -> x
plus2(0, y) -> y
plus2(s1(x), y) -> s1(plus2(x, y))
times2(0, y) -> 0
times2(s1(0), y) -> y
times2(s1(x), y) -> plus2(y, times2(x, y))
div2(0, y) -> 0
div2(x, y) -> quot3(x, y, y)
quot3(0, s1(y), z) -> 0
quot3(s1(x), s1(y), z) -> quot3(x, y, z)
quot3(x, 0, s1(z)) -> s1(div2(x, s1(z)))
div2(div2(x, y), z) -> div2(x, times2(y, z))
eq2(0, 0) -> true
eq2(s1(x), 0) -> false
eq2(0, s1(y)) -> false
eq2(s1(x), s1(y)) -> eq2(x, y)
divides2(y, x) -> eq2(x, times2(div2(x, y), y))
prime1(s1(s1(x))) -> pr2(s1(s1(x)), s1(x))
pr2(x, s1(0)) -> true
pr2(x, s1(s1(y))) -> if3(divides2(s1(s1(y)), x), x, s1(y))
if3(true, x, y) -> false
if3(false, x, y) -> pr2(x, y)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.